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Small Engines (kW) in UAVs and

Distributed power generation

3

• Small UAVs for military 

and civilian operations.

• Hybrid power system for 

remote areas. 

https://en.wikipedia.org/wiki/Stand-alone_power_system

Challenges: 

Efficiency, efficiency, efficiency…

Emissions..



Wind, solar…

Energy storage Smart grids

Biofuels  

Sustainable energy triangles: ideally

SynfuelsBatteries

Fuel cells

Sustainable electricity Sustainable transportation

Boeing 787

Gasoline: 40 MJ/kg,           

8 gal/min : ~16 MW

Lithium 

Aviation?
Battery: < 1 MJ/kg         

Tesla charger 120 KW

Advanced

Turbines

(NG, IGCC)

Advanced 

engines

(New Fuel, Effic.)

In Reality

In Reality

(3% world, 10% US)

In Reality

Slow progress

http://www.teslamotors.com/forum/forums/85kw-battery-pack-discharge-capability-technical-musings
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Comparison of specific energy/power densities 

The Ragone plot 

Combustion engines have high power density and energy density!

Ju Y. and Maruta K.,

Progress in Energy and Combustion 

Science, 37(6), 669-715.



2. Development and Challenges of   

Microscale Power Generators

Micro turbine（MIT ）
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Minimization with moving parts

• Sealing and leakage are big problems!

• Large surface area and heat loss



Combustion limits of small scale combustion
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a d2 law
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Heat recirculation to reuse heat loss
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Heat recirculation allows lean burn and breaks quenching limit…

releaseheat  chemical total

 wall the tolossheat 
H

• Combustion can happen beyond 

critical heat loss

• Flame speed can be higher than 

adiabatic flame speed

• Combustion limits depends the flow 

speed



Penn-state vortex engine: 49.1 mm3

Heat recirculation and burning w.o. moving parts

Disk-shaped Swiss-roll combustors

Tohoku University  

Efficient burning, but only as a heating source



Scheme of heat recirculating burners and burner prototypes fabricated at USC

combustion physics laboratory. (a) concept of heat recirculation in U-shaped

channel, (b) 2-D Swiss-roll burner, (c) Macro- and (d) meso-scale, toroidal 3-D

burners. Both macro- and meso-scale versions attained self-stabilized combustion.

Swissroll combustor（PU, USC，TU）

Thermoelectric? but temperature gradient is two small, efficiency is low



Mesoscale catalytic two-stage burner: Princeton



Fuji Imvac BF-34EI
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• Weight: 5.89 lbs (2.674 kg)

• Displacement: 2.1 cu in 
(34cc) 

• Bore/Stroke: 1.54x 1.10 in 
(39x28 mm) 

• Practical RPM: 1000-7500

• Horsepower: 2 hp (1491 
W) @ 7500 RPM

• Peak Torque: 1.446 lb ft 
(0.20kgm) @ 5,000 RPM

Small internal combustion engines: 1-10 HP



• 1 = steady combustion

• 0 = no combustion

Poor engine stability in lean burn

Fig.1  Dependence of engine steady state running on air/fuel ratio 
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Fuji Imvac BF-34EI



Minimum Ignition Energy?
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Le

Q ?Assumptions and simplification: 

• 1D quasi-steady state, Constant properties

• One-step chemistry

• Center energy deposition

• Adiabatic

Flame radius, R

F
la

m
e

p
ro

p
ag

at
in

g
sp

ee
d

,U

10
-1

10
0

10
1

10
2

0.0

0.4

0.8

1.2

1.6

Le=0.5

0.8

1.0
1.2

2.0

O
O O O O

adiabatic
(h=0.0)

O

1.4

Flame

ball

Extinction

limit

The critical ignition size and energy is

governed by two different length scales:

•Flame ball size (small Le)

•Extinction diameter (large Le)

Source: Chen &  Ju, Comb. Theo. Modeling (2007)

Increasing Molecule Size
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Rc: critical radius



Cube of critical flame radius, R
C
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Activation energy

Molecule size

of fuel
Mass Diffusivity Le

2

flame

activation

T

T
Z 

• Smaller molecules lead to lesser ignition energy

• Plasma can dissociate fuel into smaller molecules

• Lesser activation energy leads to lesser ignition energy. 

• Plasma can create species which will have small 

activation energy when reacting with the fuel, i.e. radicals 

and electronically excited molecules.
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Activation temperature: The temperature 

needed to initiate a particular chemical 

reaction

ydiffusivit Mass

ydiffusivit Thermal
Le

Minimum Ignition Energy depending on fuel 

molecule size

How do we improve

engine ignition reliability?

Make the spark > Rc !



Non-equilibrium plasma: large ignition kernel

MGA 

Microwave 

Microwave 

MGA

t1 t2

Less
heat
loss

Nanosec pulses

Less

heat

Loss

Large

volume

t1 t2

O, OH, NO, C2H4… production

Microwave 

Spark 
Large

heat

Loss,

Small 

volume

t1 t2

Fig.1 Current spark ignition plug: large heat loss, small volume

Fig.2a New microwave gliding ignition 

Increased volume, less heat loss

Fig.2b New microwave repetitive nanosecond

ignition with radical production, increased 

volume, less heat loss



Comparison of ignition using  microwave, gliding arc and conventional 

discharge at 10 atm (Knite Inc. and Imagineering Inc.)

Fig.7 Comparison of measured OH

intensity as a function of time in a

gasoline engine by using a conventional

spark plug and a conventional spark

with microwave

Enlarge ignition kernel size by plasma



Test Facilities

Pressure Sensor
Thermocouple

Air Flow Sensor

Carburetor

Throttle Rod Choke Rod

Exhaust

Small engine test facility at Princeton University



Lefkowitz et al. 2012, Ikeda et al. 2009

Success of plasma assisted combustion in engine

30% extension of lean burn!

It is not the fuel is too lean, it is the ignition spark size too small!

COV: Coefficient of Variation



Lean limit of a Fuji (34 cc) engine was extended dramatically 

(30%) by a microwave igniter, at 2000 RPM

• 1 = steady combustion

• 0 = no combustion

Microwave enhancement 

Fig.1  Dependence of engine steady state running on air/fuel ratio for igniters

with and without microwave discharge. 
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P-V Plots
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Left, 2000 RPM, A/F = 23.5

Right, 5000 RPM, A/F = 22.2
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• Regular spark plugs

Equi. Ratio < 1.4

• Regular spark plugs with

thin (Iridium/Platinum) electrodes

Equi. Ratio < 1.6

• RF,  “plasma”, etc. plugs

Equi. Ratio < 1.8

• Distributed NS Sparks

Equi. Ratio > 3

Flammability Limit

Existing Plug-based Ignition Systems

Andrey Y. Starikovskiy



More examples of success of plasma assisted combustion

Pulse detonation engine, nanosecond

Lefkowitz and Ombrello et al. 2013

0.30.20.150.125

Fuel mole fraction, C7H16-air 

P
la

s
m

a

o
n

o
ff

Low



Ignition/extinction S-curve Flame speed and propagation

(Flammability limit)
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Opportunity: Plasma change combustion limits?

How plasma can assist combustion?

• Shorten ignition time

• Extend extinction limit

Plasma 

Plasma

• Increase flame speed

• Extend flammability limit
• Make ignition kernel > Rc

• Accelerate ignition to flame transition



A schematic of the key reaction pathways for high pressure fuel 

oxidation of at different temperatures

(blue arrow: Below 700K; yellow arrow: 700-1050 K; 

red arrow: above 1050K).

Fuel(RH)

+OH

R
+O2RO2

QOOH

O2QOOH

HO2

H2O2

2OH

Small

alkene
C2H3/CH2O

H/HCO
+O2+(M)

Plasma

e, R*, N2*, O2*

R(*), R(v), N2(v), O2(v)

+O2

+O2

CO/CO2

Plasma assisted fuel oxidation: chemical pathways

e +O2=O+O(1D) +e

H+O2(
1Δg) =O+OH

O(1D)+RH =OH+R

N2(A,B,C)+O2=O+O+N2

N2(v)+HO2 =OH+O+N2

R(v,*)+O2=RO+OH

=???

O3+M =O+O2+M 

Slow

Ju and Sun, Plasma assisted combustion, PECS. 2015.



(b) Hot diffusion flame

(a) Cool diffusion flame

Fig.18b Direct photos of n-heptane/oxygen cool diffusion 

flame (a) and hot diffusion flame (b) flames, observed at the 

identical flow condition, fuel mole fraction of 0.07 and 

strain rate of 100 s-1 (Won et al. 2014).
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What if a fuel has low temperature chemistry 

Plasma assisted cool diffusion flames

Cool flames has no soot and NOx emissions
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Plasma assisted premixed cool flames

Cool flame burns leaner with no soot emissions



Conclusions

• Heat loss, sealing, moving parts are problems for small scale power 

generation. 

• Heat recirculation and thermal management can enable higher flame 

speed and sublimit combustion.

• Ignition in a small scale engine can be problematic at fuel lean 

condition due to the critical ignition radius.

• Plasma can enlarge the ignition kernel size, and produce chemistry 

effect to enhance ignition and combustion.

• Plasma produced cool flames provide a new way to control 

combustion and emissions in small scale engines.



Question?
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